Assessment Schedule - 2007

Mathematics: Use geometric reasoning to solve problems (90153)

Evidence Statement

	Criteria	No.	Evidence	Code	Judgement	Sufficiency
Achievement	Use geometric reasoning to solve problems.	1(a)	$\angle ACB = 52^{\circ} (\angle s \text{ on a line})$ $\angle BAC = 76^{\circ} (\angle sum isos \Delta)$	A	CAO	TWO of code A
	1	1(b)	\angle IFG = 43° (\angle s on a line) \angle GHI = 43° (opp \angle s //gram =)	A	CAO	Replacement
		1(c)	\angle JLN = 47° (Corr \angle s, // lines) \angle LMN = 180 - 47 - 98 = 35° (Co-int \angle s, // lines)	A	CAO Reasons are not required for Achievement.	evidence: any correct angle that involves at least two steps of geometric reasoning, from questions 2 and 3.
Achievement with Merit	Use, and state, geometric reasons in	2(a)	\triangle s RSO and STO are isos (= radii) \angle RSO = (180° – 80°) ÷ 2 = 50° (\angle sum isos \triangle)		Accept other valid chains of reasons.	ACHIEVEMENT plus TWO of code M
	solving problems. 2(b)	2(b)	$\angle SOT = 50^{\circ}$ (alt $\angle s$, // lines) $\angle STU = 65^{\circ}$ (\angle sum isos Δ) $\angle WXY = 48^{\circ}$ (\angle s on a line)	M	The solution must involve at least 2 steps supported by at least 2 correctly stated reasons.	OR THREE of code M
		\angle WYX = 48° (base \angle s =, isos Δ) \angle UXY = 132° (vert opp \angle s =) \angle XYU = 24° (base \angle s of isos Δ UXY) So \angle WYZ = 108° (\angle s on a line)	M	succe reasons.	Replacement	
		As ABE and ACD are similar So $\frac{AB}{12} = \frac{15}{20}$ or $\frac{AB}{15} = \frac{12}{20}$ So AB = 9 cm So DE = BC = 15 - 9 = 6 cm	M	Question 2(c) must have reference to similarity of triangles.	evidence for M: a correct angle supported by a chain of geometric reasoning of at least two steps from question 3.	
nce	Solve an extended	3	ΔOAC : isos Δ (= radii) $\angle OCA = 38^{\circ}$ (base \angle s isos Δ =)			MERIT plus
Achievement with Excellen	geometrical problem.		$\angle AOC = 104^{\circ} (\angle \text{sum } \Delta)$ Reflex $\angle AOC = 256^{\circ} (\angle \text{s at a pt})$		For code A, angle only is sufficient evidence.	Code E
			$\triangle ABC$: $\angle ABC = 128^{\circ} (^{1}/_{2} \angle \text{ at centre})$ $\angle BAC = 38^{\circ} (\text{alt } \angle \text{s, // lines})$		For codes M and E. reasons are also required.	
Achi			$\angle ACB = 14^{\circ} (\angle sum \Delta)$	E	Accept other valid chains of reasons.	

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Use geometric reasoning to solve problems.	Use, and state, geometric reasons in solving problems.	Solve an extended geometrical problem.
2 × A	$2 \times A \text{ and } 2 \times M$ or $3 \times M$	Merit plus 1 × E

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.